GFZ Analysis Centre:
Multi-GNSS Processing and Products

Mathias Fritsche, Zhiguo Deng, Maik Uhlemann, Thomas Nischan, Markus Bradke, Markus Ramatschi, Andre Brand, Gerda Beeskow

DeutschesGeoforschungsZentrum GFZ

IGS Workshop on GNSS Biases, Bern, 06. November 2015
Outline

I. GFZ contributions to IGS
II. Multi-GNSS Experiment
III. Multi-GNSS Processing Results
I. GFZ contributions to IGS

GFZ Global Multi-GNSS Station Network:
I. GFZ contributions to IGS

GFZ Analysis Center:

• Processing of GNSS data from global network (~ 200 stations)

• Primary products:
 – Satellite orbits and clocks
 IGS products: GPS, GLONASS
 MGEX products: additionally Galileo, BeiDou, QZSS
 – Reference frame products (station position and Earth rotation parameters)

• Related products:
 – Tropospheric delay estimates (Precise Point Positioning)
 – Broadcast of real-time GPS corrections for satellite orbits and clocks
I. GFZ contributions to IGS

Satellite orbit/clock product availability for different satellite systems:

<table>
<thead>
<tr>
<th>Product</th>
<th>GPS</th>
<th>GLONASS</th>
<th>Galileo</th>
<th>BeiDou</th>
<th>QZSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ultra-Rapid</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MGEX
IGS’ Multi-GNSS Experiment:

• Focus: track, collate and analyze all available GNSS signals
• Support all GNSS: modernized GPS/GLONASS and new systems BeiDou, Galileo, QZSS
• Official call for participation in the Multi-GNSS Experiment in mid 2011
• Approx ~ 140 stations at the moment
• Open data archives at CDDIS, IGN, BKG in RINEX 3.x

ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/
ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

• analysis centres: CODE, GFZ, GRGS, TUM, ESOC, WHU, JAXA
II. Multi-GNSS Experiment

Global Multi-GNSS Station Network:

- GAL (138)
- BDS (87)
- QZSS (59)
II. Multi-GNSS Experiment

Total number of MGEX-tracking stations:
II. Multi-GNSS Experiment

GNSS constellation status (September, 2015):

<table>
<thead>
<tr>
<th>Constellation</th>
<th>Revolution period</th>
<th>Actual number of satellites</th>
<th>Signal carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galileo</td>
<td>14h 05min</td>
<td>IOV(3): E11, E12, E19 (E20) FOC (4): E14, E18, E22, E26 (E24, E30)</td>
<td>E1, E5a, E5b, E5(E5a+E5b), E6</td>
</tr>
<tr>
<td>BeiDou</td>
<td>12h 53min</td>
<td>GEO (5): C01, C02, C03, C04, C05 IGSO (5): C06, C07, C08, C09, C10 MEO (3): C11, C12, C14 (C13)</td>
<td>B1, B2 (B3)</td>
</tr>
<tr>
<td>QZSS</td>
<td>23h 56min</td>
<td>IGSO (1): J01</td>
<td>L2, L2, L5, L6</td>
</tr>
</tbody>
</table>
II. Multi-GNSS Experiment

Galileo IOV satellite tracking: number of stations per satellite

- E11
- E12
- E19
- E20

IGS Workshop on GNSS Biases, Bern, 06.11.2015
II. Multi-GNSS Experiment

Galileo FOC satellite tracking: number of stations per satellite

E14

E18

E22

E26

IGS Workshop on GNSS Biases, Bern, 06.11.2015
II. Multi-GNSS Experiment

BeiDou MEO satellite tracking: number of stations per satellite
III. Multi-GNSS Processing Results

Multi-GNSS data processing:

- GNSS systems: GPS, GLONASS, Galileo, BeiDou, QZSS
- IGS-Rapid like processing configuration, i.e. daily solutions
- Roughly ~ 100 sites, IGS + MGEX data archives
- Regular processing since January 2014
- Major processing settings:

<table>
<thead>
<tr>
<th>Orbit model:</th>
<th>empirical CODE orbit model (5 parameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguity fixing:</td>
<td>GPS, GAL, BDS (IGSO, MEO)</td>
</tr>
<tr>
<td>Antenna PCO/PCV:</td>
<td>IGSwwww.atx + MGEX conventional values</td>
</tr>
<tr>
<td>Observation model:</td>
<td>undifferenced ionosphere-free linear combination</td>
</tr>
<tr>
<td>Intersystem-bias setup:</td>
<td>GLO per sta/sat-link, GAL/BDS/QZSS per station</td>
</tr>
</tbody>
</table>
III. Multi-GNSS Processing Results

Multi-GNSS data processing:

- Observation type selection

<table>
<thead>
<tr>
<th>System</th>
<th>Signal carrier</th>
<th>RX3 modulations (code/phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>L1/L2</td>
<td>L1: WC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: W</td>
</tr>
<tr>
<td>GLONASS</td>
<td>G1/G2</td>
<td>L1: PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: PC</td>
</tr>
<tr>
<td>Galileo</td>
<td>E1/E5a</td>
<td>L1: CX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L5: QX</td>
</tr>
<tr>
<td>BeiDou</td>
<td>B1/B2</td>
<td>L1: I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L7: I</td>
</tr>
<tr>
<td>QZSS</td>
<td>L1/L2</td>
<td>L1: CX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2: X</td>
</tr>
</tbody>
</table>
III. Multi-GNSS Processing Results

Multi-GNSS station selection for IGS rapid-like solution:

- **GPS/GLO (119)**
- **GAL (59)**
- **BDS (36)**
- **QZSS (16)**

IGS Workshop on GNSS Biases, Bern, 06.11.2015
III. Multi-GNSS Processing Results

Galileo, BeiDou, QZSS ground-track characteristics:
III. Multi-GNSS Processing Results

Galileo / BeiDou / QZSS site-specific visibility:

![Graphs showing visibility of Galileo, BeiDou, and QZSS satellites at Jiufeng (China) and Arequipa (Peru).]
III. Multi-GNSS Processing Results

GNSS satellites included in data processing:

- GAL median: 4
- BDS median: 13
- GLO median: 23
- GPS median: 31
III. Multi-GNSS Processing Results

Quality of GPS and GLONASS satellite positions:

Similarity transformation of daily satellite positions w.r.t. official IGS-Rapid solution

![Graph showing GPS and GLONASS orbit differences.](Image)
III. Multi-GNSS Processing Results

GPS, GLONASS, Galileo, BeiDou, QZSS satellite position overlaps:

Position differences at same epochs derived from independent observations
III. Multi-GNSS Processing Results

GNSS orbit validation using Satellite Laser Ranging (SLR):

![Graph showing SLR residuals for different satellites and orbital types.](image)
III. Multi-GNSS Processing Results

Satellite clock performance:

Clock stability [ps/s]

September–2015

G03 (IIF)
E11 (IOV)
E18 (FOC)
E22 (FOC)
C03 (GEO)
C11 (MEO)
J01
III. Multi-GNSS Processing Results

<table>
<thead>
<tr>
<th>BIAS/SOLUTION</th>
<th>SVN</th>
<th>PRN</th>
<th>SITE</th>
<th>DOMES</th>
<th>OBS</th>
<th>OBS2</th>
<th>BIAS_START</th>
<th>BIAS_END</th>
<th>UNIT</th>
<th>ESTIMATED_VALUE</th>
<th>STD_DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISB</td>
<td>C</td>
<td>C</td>
<td>BRST</td>
<td>10004M004</td>
<td>L1I</td>
<td>L7I</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>118.19677</td>
<td>0.14620</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>C</td>
<td>C</td>
<td>BRUX</td>
<td>13101M010</td>
<td>L1I</td>
<td>L7I</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>83.68653</td>
<td>0.13546</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>C</td>
<td>C</td>
<td>SIN1</td>
<td>22601M003</td>
<td>L1I</td>
<td>L7I</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>0.00007</td>
<td>0.02388</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>E</td>
<td>E</td>
<td>SCRZ</td>
<td>41801M001</td>
<td>L1C</td>
<td>L5Q</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>20.29020</td>
<td>0.13763</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>E</td>
<td>E</td>
<td>SEYG</td>
<td>39801M004</td>
<td>L1X</td>
<td>L5X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>0.43614</td>
<td>0.13546</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>E</td>
<td>E</td>
<td>SIN1</td>
<td>22601M003</td>
<td>L1X</td>
<td>L5X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>0.00003</td>
<td>0.04490</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>J</td>
<td>J</td>
<td>OWNG</td>
<td>50253M001</td>
<td>L1C</td>
<td>L2X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>3.25922</td>
<td>0.24147</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>J</td>
<td>J</td>
<td>POHN</td>
<td>51601M001</td>
<td>L1X</td>
<td>L2X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>-3.10935</td>
<td>0.16428</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>J</td>
<td>J</td>
<td>PTVL</td>
<td>51402M002</td>
<td>L1X</td>
<td>L2X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>-0.25388</td>
<td>0.17145</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>J</td>
<td>J</td>
<td>SIN1</td>
<td>22601M003</td>
<td>L1X</td>
<td>L2X</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>-0.00017</td>
<td>0.07152</td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>R715 R14</td>
<td>OWNG</td>
<td>50253M001</td>
<td>L1P</td>
<td>L2P</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>7.37260</td>
<td>0.19260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>R715 R14</td>
<td>PADO</td>
<td>12750S001</td>
<td>L1C</td>
<td>L2P</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>37.59014</td>
<td>0.18109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>R715 R14</td>
<td>PBRI</td>
<td>22308M001</td>
<td>L1</td>
<td>L2</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>22.97630</td>
<td>0.19837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>R715 R14</td>
<td>SIN1</td>
<td>22601M003</td>
<td>L1P</td>
<td>L2P</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>-0.00013</td>
<td>0.09040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td>R716 R15</td>
<td>SIN1</td>
<td>22601M003</td>
<td>L1P</td>
<td>L2P</td>
<td>15:305:00000</td>
<td>15:305:86399 ns</td>
<td>-0.00013</td>
<td>0.09603</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open/known issues:

- Clock reference system reporting (GPS!)
- C1W-C1C satellite bias handling (cc2noncc)
- Galileo C1C-C1W / C2Q-C2X satellite biases
Next steps / future developments:

- Switch to ECOM2 orbit parameterisation (extended ECOM)
- Extend station selection to improve multi-GNSS observation data coverage (time and geometry)
- Generation of consistent GAL clock / DCB product
- Provide all processing chains (Ultra/Rapid/Final) in multi-GNSS mode
Many thanks for your attention